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1. Introduction and Conclusion

For a highly relativistic charged beam, the Lorentz contraction compresses the
electromagnetic field of the beam into the 2-D transverse plane. This results in the induced
currents on the beam chamber wall having the same longitudinal intensity modulation as the
charged beam. When the wavelength of the beam intensity modulation is large compared to
the dimensions of the button electrodes, which are used as beam position monitors (BPMs),
the calculation of the induced currents on the buttons may be simplified as a 2-D electrostatic
problem. For four-button BPMs, vertical and horizontal signals are monitored from the
differences in the induced charges between the top and bottom, and right and left buttons,
respectively.

In this Note, the coefficients of four-button BPMs are calculated using Green’s
reciprocation theorem, which shows that finding induced charges on the buttons due to a
charge at a beam position is equivalent to finding induced potential at a beam position due to
given potentials on the buttons. In the case of finite element modeling, using the theorem
significantly simplifies the calculation of BPM coefficients: the induced potential method
needs only three sets of calculations for the sum, vertical, and horizontal signals, compared to
one calculation for each beam position for the induced charge method. For the case of
analytical expressions, two examples are given: the calculations for optimized button
configurations on a small-gap chamber and the circular chamber after conformal
transformations of the chamber geometry for the both cases. The BPM coefficients for the
analytical results are expressed in simple formulae, which agree with the results of numerical
integrals and infinite series obtained from the induced charge method.

2. Green’s Reciprocation Theorem

First, we consider that a set of n charges q1, q2, …, qn on n conductors will give rise to
potentials V1, V2, …, Vn on the conductors. The potential Vm at qm is due to all qi except qm. If
a different set of charges qp1, qp2, …, qpn gives rise to potentials Vp1, Vp2, …, Vpn, then Green’s
reciprocation theorem [1] states that
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Equation (1) may be applied to analyze a system of four-button BPMs as shown in the
cross-section of a narrow-gap beam chamber in Fig. 1 (a). At first the beam chamber, as well
as the BPM buttons, is assumed to be grounded, i.e. Vi = 0 (i = 1,..,4). If we place a point
charge q at a beam position (xo, yo), then induced charges q1, q2, q3, and q4 will appear on the
four buttons. (We assume that the potential at the beam position is Vs.) Now we remove the
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charges at the beam position and on the buttons in order to have a new set of charges and
potential distribution. This time, if we apply a potential of +Vp to all four buttons (and at the
same time we assume to have a charge distribution of qp1, qp2, qp3, and qp4 on the four
buttons), then a potential we call Vps will be induced at the beam position. These two sets of
charge/potential distributions are summarized in Table 1.

Table 1. Charge/Potential Distributions
(xo,yo) button 1 button 2 button 3 button 4

Charge (qi) q q1 q2 q3 q4

Voltage (Vi) Vs 0 0 0 0
Charge (qpi) 0 qp1 qp2 qp3 qp4

Voltage (Vpi) Vps Vp Vp Vp Vp

Then, from the second and third rows of the table, the right side of Eq. (1) vanishes, and,
from the first and fourth rows, the left side of Eq. (1) gives the relation for the sum signal

 q Vps + (q1 + q2 + q3 + q4) Vp = 0,
or  Qs/(−q) = Vps/Vp, (Qs = q1 + q2 + q3 + q4). (2)

We can also apply the potential Vp on the buttons in two different configurations besides
the above case for all +Vp. By setting the upper two buttons to +Vp and the lower two buttons
to −Vp, the potential at (xo, yo) will be called Vpy. Similarly, by setting the right two buttons
to +Vp and the left two buttons to −Vp, the potential at (xo, yo) will be called Vpx. Then, from
Eq. (1) we have

 q Vpy + (q1 + q2 − q3 − q4) Vp = 0,
 q Vpx + (q1 − q2 − q3 + q4) Vp = 0,

or  Qy /(−q) = Vpy/Vp, (Qy = q1 + q2 − q3 − q4),
 Qx/(−q) = Vpx/Vp, (Qx = q1 − q2 − q3 + q4). (3)

Equations (2) and (3) imply that Qs, Qy, and Qx, corresponding to the sum, vertical, and
horizontal signals for the beam position, are proportional to Vps, Vpy, and Vpx, respectively.
When the position of charge q changes, Qs, Qy, and Qx change due to the redistribution of the
induced charges on the buttons. This is equivalent to having different induced potentials Vps,
Vpy, and Vpx at the new beam position.

Except for a few cases of chamber geometry, derivation of analytical expressions for the
induced charges on the buttons is limited. When finite element modeling has to be made for
the calculation of induced charges on the buttons, one mesh geometry is required for each
beam position (xo,yo), making it almost impossible to have a complete set of calculations for
the chamber cross section, where the BPMs are located. Instead, when the induced potentials
at the beam positions are chosen for the calculation by applying the Green’s reciprocation
theorem, the three induced potentials Vps, Vpy, and Vpx can be calculated, after applying
potentials +Vp or −Vp on the buttons, with only one mesh geometry, which simplifies the
calculation significantly.
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3. BPM Coefficients for the Optimized Configuration in a Small-Gap Beam Chamber

Figure 1 shows the conformal mapping of the inner region of a small-gap beam chamber
in the z-plane into the upper half-plane of the w-plane under the transformation

),2/exp( hziw π=  where h is the half-gap of the chamber. We assume that the chamber width
is much larger than its gap height. (A width-to height ratio larger than five gives sufficiently
accurate results.) The charge q(zo) in the z-plane is now located at wo in the w-plane. Adding

an image charge )( owq−  at the complex conjugate of wo brings the potential on the u-axis to

zero. Then, from electric field )2/( rqE oπε=  at a distance r from a point charge q(0) in a 2-

D, or from a straight, infinitely long line charge in a 3-D, the electrostatic potential

distribution Φ(x,y) due to q(wo) and )( owq−  in the upper half of the w-plane is calculated as

,
)(cos)(cosh

)(cos)(cosh
ln

4||

||
ln

2
),(

oo

oo

oo

o

o yypxxp

yypxxpq

ww

wwq
yx

++−
−−−−=

−
−−=Φ

πεπε
 (4)

where ε0 is the permittivity constant and p =  π/2h. The same result was obtained from the
infinite numbers of image charges and was used to calculate the sum, vertical, and horizontal
signals [2].

For this relatively simple geometry, when a potential of +Vp or −Vp is applied on the
buttons, the induced potentials Vps, Vpy, and Vpx at the beam position can be calculated in the
w-plane. First, assuming that the beam chamber is grounded, the induced potential at the
beam position V(xo,yo) due to potential Vp on one button, may be calculated from the
Poisson’s formula for the upper half-plane:
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where ,sin o
px

o pyeu o−=  o
px

o pyev o cos= , u1 and u2 are the button locations corresponding

to x1 and x2 in Fig. 1 (a). Then, for four buttons located symmetrically with respect to the x-
and y-axes, Vps, Vpy, and Vpx are calculated from Eq. (5):
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When Vp is replaced with (-q), Eqs. (6) - (8) are indeed identical to the integral forms of
Qs, Qy, and Qx in reference [2]. By substituting the button positions (x1 and x2) and the half-
gap height h (p = π/2h) in Eqs. (6) - (8), sum, vertical, and horizontal signals and BPM
coefficients can be calculated directly from Vpy/Vps and Vpx/Vps.

Figure 2 shows 3-D plots of the sum, vertical, and horizontal signals as well as their
normalized signals to the sum signal in the plane of normalized beam position to half-gap of
the chamber (xo = xo/h, yo = yo/h) for Vp = 1.0. The 3-D plots are calculated for the case of x1

= 0 and x2 = 2h (button diameter of 2h), which is the optimized BPM configuration in a
small-gap beam chamber [2]. The sum and vertical signals start to decrease in |xo| > 1.5. For
|xo| < 2, the normalized vertical signal has excellent linearity with respect to the vertical
beam position. The horizontal and its normalized signals, on the other hand, are highly
nonlinear compared to the vertical one, even for |xo| < 0.5.

In Fig. 3, normalized signals are plotted at selected values of xo and yo. For |xo| < 2, the
linearity for the vertical signal is shown again to be very close to the chamber wall in the
vertical direction. The horizontal signal becomes relatively insensitive to the beam position
for |xo| > 1. Polynomial coefficients of the BPM and their inversions to the third and fifth
orders are listed in Table 2. The R value in the table is defined as the square root of

,}/)(/{)(1 2222 ∑∑ ∑ −−−= nyyyyR iioi

where yi is the actual input data for the plot, yo is the estimated values using the coefficients
in the table, and n is the number of data points. R ranges from 0 to 1. If R is 1, there is no
difference between the actual data and estimated ones using the polynomial coefficients.

4. BPM Coefficients in a Circular Beam Chamber

Four-button BPMs in a circular beam chamber of radius a in the z-plane (Fig. 4(a)) are
mapped into the w-plane (Fig. 4(b)) under the transformation ),1/()1( zziivuw −+=+=
where z is normalized to the chamber radius. The buttons are located symmetrically with
respect to the x- and y-axes of the chamber. The induced potential V(xo,yo) due to potential Vp

on button (1), located in the first quadrant, can be calculated from Eq. (5) with
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Then, by adding up the induced potential from the four buttons, the potential for the sum
signal can be calculated from
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The induced potentials, Vpy(xo,yo) and Vpx(xo,yo), for the vertical and horizontal signals can be
obtained with minus signs in the third and fourth terms, and with minus signs in the second
and third terms, respectively, in Eq. (10). The induced charges associated with the sum,
vertical, and horizontal signals for four-button BPMs in a circular beam chamber of radius a,
shown in Fig. 4(a), are given by [3]
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By replacing −ρk with Vp, Eq. (11) should give the identical results with Eq. (10), Vpy(xo,yo),
and Vpx(xo,yo). Indeed, for a = 35 mm, θp = π/4, θ1 = 0.5239 rad, and θ2 = 1.0469 rad, (∆θ/2 =
0.2615 rad) one can show numerically that, with n = 10 terms for ro/a= 0.4 and n = 75 terms
for ro/a= 0.9, the two methods agree to within 5×10-6.

Figure 5 shows the induced potentials associated with the sum and normalized vertical
signals as functions of yo = yo/a at four selected values of xo = xo/a for the above chamber
radius and angular positions of the buttons. (For θp = π/4, Vpy and Vpx should give the same
value.) Polynomial coefficients of the BPM and their inversions to the third order for |yo| <
0.5 are listed in Table 3.

From the induced potentials, 3-D plots in the plane of ro = ro/a and th = angle (rad) for the
sum, vertical, and normalized vertical signals with Vp.=1.0 are shown in Fig. 6. The buttons
occupy approximately 1/3 of the chamber circumference, so that Vps near ro = 0 is 0.33.
When the beam positions are close to those of the buttons, both Vps and Vpy are much larger
than 0.5; those parts are not shown in Fig. 6(a). However, as shown in Fig. 6(b), the
normalized values Vpy/Vps vary rather smoothly even near the buttons. The variations of Vps

and Vpy/Vps at th = π/2 rad along the radius in Fig. 6 correspond to the curves for xo = 0 in
Fig. 5.

When the four buttons are located at the top (T), bottom (B), right (R), and left (L) of the
circular chamber in Fig. 4(a) instead of at θp = π/4, two sets of buttons, T and B, and R and L,
can be used for vertical and horizontal BPMs, respectively. The sum signal for the vertical
BPM is given by
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where parameters uo, vo, and ξ(θ) are listed in Eq. (9). The vertical signal, VT−B(xo,yo), is
calculated with a minus sign in the second term in Eq. (12). Horizontal signals can be
calculated by replacing π/2 and 3π/2 with zero and π in the above equation.

The sum and normalized signals are plotted in Fig. 7 with ∆θ/2 = 0.2615 rad. For |yo| <
0.5, the signal magnitudes with two buttons are approximately one half of those with four
buttons, as seen from Fig. 5. With two buttons, however, the dependence of the normalized
vertical signal to the horizontal beam position is much smaller compared to the four buttons
in Fig. 5(b). Polynomial coefficients of the BPM and their inversions to the third order for
|yo| < 0.5 are listed in Table 4. In Fig. 8 the sum, vertical, and normalized vertical signals are
plotted in the plane of ro = ro/a and th = angle (rad). The normalized signal at th = π/2
corresponds to Fig. 7(b) at xo = 0.
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Table 2. Four-button BPM coefficients for optimized configuration (x1 = 0 and x2 = 2h)
of a narrow beam chamber. (a) and (b) are coefficients for normalized vertical signals
and their inversions for |yo| < 0.75 to the third order at selected values of xo where xo =
xo/h and yo = yo/h. (c) and (e) are coefficients for normalized horizontal signals and
their inversions for |xo| < 0.5 to the fifth order at four selected values of yo; (d) and (f)
are to the third order.

(a) Y = M1 yo + M3 yo3,  ( Y =Vpy/Vps): Normalized vertical signal
xo = 0 xo = 0.5 xo = 1.0 xo = 1.5 xo = 2.0 xo = 2.5

M1 1.0531 1.0671 1.1087 1.1456 1.0023 0.63811

M3 -0.05919 -0.07432 -0.11671 -0.13112 -0.00257 -0.15317

R 1 1 1 1 1 1

(b) yo = m1 Y + m3 Y
3,  (Inverted polynomial coefficients)

m1 0.94886 0.93604 0.89952 0.87005 0.99767 1.5424

m3 0.053523 0.065415 0.094456 0.094678 0.002561 1.4707

R 1 1 1 1 1 0.99997

(c) X = N1xo + N3 xo3+ N5 xo5,
                                      ( X =Vpx/Vps): Normalized horizontal signal)

yo=0 yo=0.25 yo=0.5 yo=0.75
N1 0.96141 1.0438 1.3423 2.0845

N3 -0.34894 -0.46193 -0.94616 -2.5025

N5 0.099612 0.15388 0.40996 1.3483

R 1 1 0.99996 0.99911

(d) X = N1xo + N3 xo3

N1 0.96343 1.0492 1.3728 2.284

N3 -0.33966 -0.46131 -1.0393 -3.4263

R 1 1 0.99998 0.99938

(e) xo = n1 X + n3 X
3+ n5 X

5,  (Inverted polynomial coefficients)
n1 1.0443 0.95933 0.73633 0.4899

n3 0.31738 0.31084 0.17632 -0.53407

n5 0.77616 0.80171 0.97583 1.6125

R 1 1 0.99999 0.99981

(f) xo = n1 X + n3 X
3

n1 1.030 0.94127 0.69701 0.32245

n3 0.54812 0.5761 0.61178 0.61998

R 1 1 0.99999 0.99971
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Table 3. Four-button BPM coefficients for normalized vertical signals and their
inversions in the circular chamber of Fig. 4(a) for |yo| < 0.5 at four selected values of
xo, where xo = xo/a, yo = yo/a, and a is the chamber radius.

(a) Y = M1 yo + M3 yo3,  ( Y =Vpy/Vps)
xo=0 xo=0.2 xo=0.4 xo=0.6

M1 1.3835 1.5297 1.9125 2.3816
M3 -0.98581 -1.1066 -1.609 -2.5389
R 1 1 0.99999 0.99999

(b) yo = m1 Y + m3 Y
3,

                       (Inverted polynomial coefficients)
xo=0 xo=0.2 xo=0.4 xo=0.6

m1 0.69876 0.63119 0.49711 0.3834

m3 0.51833 0.39346 0.26299 0.21581

R 0.99998 0.99998 0.99996 0.99981

Table 4. Two-button BPM coefficients for normalized vertical signals and their
inversions in the circular chamber for |yo| < 0.5 at four selected values of xo where xo =
xo/a, yo = yo/a, and a is the chamber radius. The two buttons are located at the top (θp =
π/2) and bottom (θp = 3π/2) of Fig. 4(a).

(a) Y = M1 yo + M3 yo3,  ( Y =Vpy/Vps)
xo=0 xo=0.2 xo=0.4 xo=0.6

M1 1.9538 1.8925 1.7257 1.4965
M3 -1.5189 -1.4066 -1.1531 -0.8810
R 0.99999 0.99999 1 1

(b) yo = m1 Y + m3 Y
3,

                       (Inverted polynomial coefficients)
xo=0 xo=0.2 xo=0.4 xo=0.6

m1 0.49094 0.50899 0.56285 0.65388

m3 0.21394 0.21763 0.23982 0.30008

R 0.99997 0.99998 0.99999 0.99999
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Fig. 1. Conformal mapping of a small-gap beam chamber with a relatively large chamber
width-to-height aspect ratio from (a) z-plane to (b) w-plane using a transformation of w =
i exp(πz/2h), where h is the half-gap of the chamber. The buttons are located
symmetrically with respect to the x- and y-axes in the z-plane.
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Fig. 2. 3-D plots for (a) sum (Vps), (b) vertical (Vpy) and normalized vertical (Vpy/Vps),
and (c) horizontal (Vpx) and normalized horizontal (Vpx/Vps) signals in the plane of xo =
xo/h and yo = yo/h for the optimized configuration in a small-gap beam chamber.
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in a small-gap beam chamber.
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transformation of ),1/()1( zziivuw −+=+=  where z is normalized to the chamber
radius a. The buttons are located symmetrically with respect to the x- and y-axes in the z-
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position yo = yo/a at selected values of xo = xo/a for four-button BPMs in the circular
beam chamber (Fig. 4) with parameters of a = 35 mm, θp = π/4, θ1 = 0.5239 rad, and θ2

= 1.0469 rad.
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Fig. 6. 3-D plots for (a) sum (Vps), vertical (Vpy) and (b) normalized vertical (Vpy/Vps)
signals in the plane of ro = ro/a and th = angle (rad) for four-button BPMs in the circular
beam chamber (Fig. 4) with parameters of a = 35 mm, θp = π/4, θ1 = 0.5239 rad, and θ2 =
1.0469 rad. When the beam position is near the buttons, the sum and vertical signal
become large, as shown for Vps at xo = 0.6 in Fig. 5(a), and were cut at 0.5. The values of
Vpy/Vps along ro at th = π/2 rad correspond to Fig. 5(b) at xo=0.
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Fig. 7. (a) Sum (VT+B) and (b) normalized vertical (VT−B/VT+B) signals as functions of
beam position yo = yo/a at selected values of xo = xo/a for two-button BPMs located at
the top (θp = π/2) and bottom (θp = 3π/2) of the circular beam chamber in Fig. 4 with
parameters of a = 35 mm and ∆θ/2 = 0.2615 rad.
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(b)  Vert/Sum (VT−B/VT+B)
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Fig. 8.  3-D  plots for (a) sum (VT+B), vertical (VT−B) and (b) normalized vertical
(VT−B/VT+B) signals in the plane of ro = ro/a and th = angle (rad) for two-button BPMs
located at the top and bottom of the circular beam chamber in Fig. 4 with parameters of
a = 35 mm and ∆θ/2 = 0.2615 rad. When the beam position is near the buttons, the sum
and vertical signal become large, as shown for VT+B at xo = 0.2 and 0.4 in Fig. 7(a), and
were cut at 0.35. The values of VT−B/VT+B along ro at th = π/2 rad correspond to Fig. 7(b)
at xo=0.


